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Abstract
We use a Green’s function method to study the temperature-dependent average moment and
magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other
similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and
the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin
interaction. The dependence of the transition temperature TN and the zero-temperature average
spin on the interaction constants is investigated. We obtain an analytical expression for TN and
determine our temperature-dependent average spin from zero temperature to TN in terms of
unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the
coupling interactions with the experimental transition temperature TN = 138 K. Our results also
show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence
of a non-zero TN, and the many-body AFM fluctuations reduce substantially the
low-temperature magnetic moment per Fe towards the experimental value. Our Green’s
function approach can be used for other FeAs-based parent compounds and these results should
be useful to understand the physical properties of FeAs-based superconductors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The discovery of the high-temperature superconductor
LaFx FeAsO1−x by Kamihara et al [1] has triggered world-
wide research on all aspects of FeAs-based pnictides super-
conductors and their parent compounds, namely LnFeAsO
(Ln = La [1–7], Ce [8, 9], Pr [10], Nd [11, 12],
Sm [13–15], . . . ) and AFe2As2 (A = Ca [16–18], Sr [19–21],
Ba [22, 23, 21]). LnFeAsO and AFe2As2 have some common
characteristics: (a) they are all of layered structure and have
structure transitions from high-temperature tetragonal to low-
temperature orthorhombic symmetry; (b) they all have stripe-
like antiferromagnetic (AFM) order formed by Fe atoms,
and the AFM transition temperatures TNs are not higher
than the structure transition temperatures TSs; (c) the onset

of superconductivity competes with the AFM and structure
transitions [24, 25], and they differ in the sense that TN < TS

for LnFeAsO and TN = TS for AFe2As2. Both of the two series
can be made superconducting by doping them with appropriate
dopants or applying pressures. It should help in understanding
the superconductivity of FeAs-based materials to elucidate the
corresponding antiferromagnetism of the parent compounds.

LaFeAsO is the prototype and the representative of the
parent compounds of FeAs-based superconductors, and thus
we focus on the striped AFM order of undoped LaFeAsO,
whose TN is 138 K and TS 156 K [2, 3]. First-principles results
confirm that the stripe-AFM order is the magnetic ground
state [5]. Spin-wave approaches were adopted to give the
low-temperature excitation spectra [7, 26, 19], and the spin–
orbit interaction and p–d hybridization are used to explain the
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observed small magnetic moment 0.25 μB ∼ 0.36 μB per Fe
at low temperature [2, 3, 6]. However, it is highly desirable
to describe the magnetic moment from zero temperature to TN

within a unified theory.
In this paper, we use a Green’s function method to

study the temperature-dependent average moment and phase-
transition temperature of the striped antiferromagnetism of
LaFeAsO, and other similar compounds, as the parents of
FeAs-based superconductors. We consider the nearest and the
next-nearest couplings in the FeAs layer, and only the nearest
one for the inter-layer spin interaction. The dependence of
the transition temperature TN and the zero-temperature average
spin on the four interactions are investigated. We obtain an
analytical expression for TN, and determine our temperature-
dependent average spin from zero temperature to TN in terms
of unified self-consistent equations. For LaFeAsO, we obtain
a reasonable estimation of the coupling interactions with
experimental phase-transition temperature TN = 138 K. Our
results also show that a non-zero antiferromagnetic inter-layer
coupling is essential for the existence of a non-zero TN, and
the many-body AFM fluctuations reduce substantially the low-
temperature magnetic moment per Fe towards the experimental
value. More detailed results will be presented. The remaining
part of this paper is organized as follows. In section 2, we
shall give our spin model, the Green’s function derivation and
our main analytical results. In section 3, we shall present our
numerical results and make corresponding discussions. Our
conclusion is given in section 4.

2. Effective model, Green’s function derivation, and
main analytical results

To deal with the striped AFM configuration of LaFeAsO, we
consider the Fe lattice of the original orthorhombic LaFeAsO
structure and divide it into two sublattices, in each of which
the Fe spins align parallel but are antiparallel between the
two sublattices (figure 1). Hence we consider an anisotropic
Heisenberg Hamiltonian

Ĥ =
∑

〈i,j〉
J〈i,j〉Ŝi · Ŝ j + J2

∑

〈〈i,j〉〉
Ŝi · Ŝ j , (1)

in which Ŝi denotes the quantum spin operator at the lattice
position i, 〈i, j〉 means nearest-neighbor (NN) spin pairs, and
〈〈i, j〉〉 means next-nearest-neighbor (NNN) spin pairs in the
a–b plane (we only consider NNN pairs in the a–b plane
because the inter-layer interactions are very weak). The NN
interaction J〈i,j〉 can be three values: J1a which is the spin
interaction between parallel NN spins in the a–b plane, J1b

between antiparallel NN spins in the a–b plane and Jc between
the inter-layer NN spins. J2 is the interaction between NNN
spins in the a–b plane. Four different J s make Ĥ anisotropic.
To differentiate the spin operators in SL1 and SL2, we use Ŝ1i

and Ŝ2j to represent them, respectively. For spins in SL2, we
make transformations: Ŝ′

2j
z = −Ŝz

2j, Ŝ′
2j
+ = Ŝ−

2j , Ŝ′
2j
− = Ŝ+

2j and
then have

Ŝ1i · Ŝ2j = 1
2 (Ŝ+

1i Ŝ−
2j + Ŝ−

1i Ŝ+
2j) + Ŝz

1i Ŝ
z
2j

= 1
2 (Ŝ+

1i Ŝ′
2j
+ + Ŝ−

1i Ŝ′
2j
−) − Ŝz

1i Ŝ
′
2j
z .

(2)

a b

c

Figure 1. The magnetic cell with volume a × 2b × 2c of the
orthorhombic Fe spin lattice. The Fe lattice consists of two spin
sublattices: SL1 (black) and SL2 (red or gray). a and b are the two
base vectors in the FeAs layer, and c is perpendicular to both
a and b.

Inserting (2) into (1) we can get the Hamiltonian expressed by
S1i and S′

2j (simple but too long to give out here).
Accordingly, we use a Green’s function method [27, 28]

to solve the model (1). In this scheme one uses a double-
time Green’s function 〈〈Â(t); B̂(t ′)〉〉 ( Â and B̂ represent two
arbitrary quantum operators) which satisfies the following
equation of motion:

ih̄
d

dt
〈〈Â(t); B̂(t ′)〉〉 = δ(t − t ′)〈[ Â(t), B̂(t)]〉
+ 〈〈[ Â(t), Ĥ ]; B̂(t ′)〉〉. (3)

This approach proves successful for various Heisenberg spin
models [27–32]. In [30], there is a detailed but somewhat long
derivation about the Green’s function method for Heisenberg
spin models, and by considering this derivation, we conclude
that the process of using Green’s functions to solve the average
spin of a Heisenberg model can be simplified into three
steps: (a) construct Green’s functions 〈〈Ŝ+

i ; Ŝ−
j 〉〉 and their

equations of motion via (3) and then use a Tyablikov cutoff
approximation (4) to decouple the equations of motion [28];

〈〈Ŝz
i Ŝ+

j ; B̂〉〉 i �=j−→〈Ŝz〉〈〈Ŝ+
j ; B̂〉〉 (4)

(b) use the spectrum theorem to express the correlation
function 〈Ŝ− Ŝ+〉 in term of the average spin z-component 〈Ŝz〉
and then obtain the �(〈Ŝz〉) function

�(〈Ŝz〉) = 1
2 〈Ŝ− Ŝ+〉/〈Ŝz〉; (5)

(c) use the Callen expression (6) [30] to evaluate 〈Ŝz〉 self-
consistently

〈Ŝz〉 = (S − �)(1 + �)2S+1 + (S + 1 + �)�2S+1

(1 + �)2S+1 − �2S+1
. (6)

According to the three steps given above, for our spin
system we construct double-time spin Green’s functions
between spin operators at two positions i and j in SL1

G̃(11)

ij (t, t ′) = 〈〈Ŝ+
1i (t); Ŝ−

1j(t
′)〉〉 (7)

2
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and Green’s functions between spin operators at two positions
i′ in SL2 and j′ in SL1

G̃(21)

i′j′ (t, t ′) = 〈〈Ŝ′−
2i′ (t); Ŝ−

1j′(t
′)〉〉. (8)

Equation (7) can be expressed as a Fourier expansion

G̃(11)

ij (t, t ′) = 1

2π h̄

∫
G(11)

ij (ω)e−iω(t−t ′)/h̄dω, (9)

because the Hamiltonian (1) is time independent, and (8) is
similar. Assuming that each spin has the same average 〈Ŝz

1〉
for SL1 and 〈Ŝ′

2
z〉 for SL2, and because of the AFM symmetry

plus the transformation (2), we have 〈Ŝz
1〉 = 〈Ŝ′

2
z〉 = 〈Ŝz〉.

Then using the Fourier transformation as shown in (9), making
the Tyablikov cutoff approximation to decouple the equations
of motion, and another Fourier transformation from lattice sites
real space to k space, we have

1 + g(11)
k

[
J1bρ1(k) − ω

2〈Ŝz〉
]

+ J1bg(21)
k ρ2(k) = 0 (10)

and

g(11)
k J1bρ2(k) + g(21)

k

[
J1bρ1(k) + ω

2〈Ŝz〉
]

= 0, (11)

in which
g(11)

k =
∑

r

G(11)

i,i+r(ω)e−ik·r

g(21)
k =

∑

r

G(21)

i,i+r(ω)e−ik·r,
(12)

ρ1(k) = −p(1 − cos k · a) + 1 + 2q + r

ρ2(k) = (1 + 2q cos k · a) cos k · b + r cos k · c,
(13)

and

p ≡ J1a

J1b
, q ≡ J2

J1b
, r ≡ Jc

J1b
. (14)

We should point out that: (a) the wavevector k we used
here is based on the whole lattice sites (SL1 + SL2), so r in
summations of (12) runs over all sites in the whole lattice;
(b) for a homogeneous system, G(11)

i,i+r is only a function of

relative position r and independent of i (as a result G(11)

ii =
G(11) which is used below); G(21)

i,i+r is analogous.
From (10) and (11) we derive

g(11)
k = 〈Ŝz〉√

ρ2
1 − ρ2

2

⎡

⎣
ρ1 +

√
ρ2

1 − ρ2
2

ω − E(k)
−

ρ1 −
√

ρ2
1 − ρ2

2

ω + E(k)

⎤

⎦ ,

(15)
where E(k) is the spin excitation spectrum defined by

E(k) = 2J1b〈Ŝz〉
√

ρ2
1 (k) − ρ2

2 (k). (16)

And from g(11)
k we get G(11)

ij

G(11)

ij (ω) = 1

N

∑

k∈BZ

g(11)
k eik·(i−j), (17)

in which N is the total number of spins in SL1 and SL2, and
BZ denotes the first Brillouin zone (there are N k-points in
BZ). Using the spectrum theorem and letting j = i, we get the
correlation function 〈Ŝ−

1 Ŝ+
1 〉 as follow

〈Ŝ−
1 Ŝ+

1 〉 = − 1

π

∫ ∞

−∞
Im[G(11)(ω + i0+)]

eβω − 1
dω

= 〈Ŝz
1〉

N

∑

k∈BZ

⎡

⎣ ρ1√
ρ2

1 − ρ2
2

coth
β E(k)

2
− 1

⎤

⎦ ,

(18)

where β = 1/(kBT ), T is temperature, and kB is the
Boltzmann constant. Then using (5) we get the � function:

�(〈Ŝz〉) = 1

2N

∑

k∈BZ

⎡

⎣ ρ1√
ρ2

1 − ρ2
2

coth
β E(k)

2
− 1

⎤

⎦ . (19)

Now, the average spin z-component 〈Ŝz〉 can be obtained
easily by self-consistently solving (19) and (6). A special case
is that when the temperature T = 0, coth βE(k)

2 → 1, and we
have

�0 ≡ �|T =0 = 1

2N

∑

k∈BZ

⎡

⎣ ρ1√
ρ2

1 − ρ2
2

− 1

⎤

⎦ . (20)

At this time, �0 is no longer dependent on 〈Ŝz〉 and the zero-
temperature average spin z-component 〈Ŝz〉0 can be obtained
directly by inserting (20) into (6).

While the temperature approaches TN, 〈Ŝz〉 approaches
zero and, further, E(k) → 0 and � → ∞. Expanding (19)
and (6), we derive

〈Ŝz〉 ∝
√

1 − T

TN
, (21)

where TN is defined by

TN = 2J1b S(S + 1)

3�kB
(22)

and � = 1
N

∑
k[ρ1/(ρ

2
1 − ρ2

2 )].

3. Numerical results and discussions

There is no consensus on the magnitudes of the cou-
pling interactions J1a , J1b, J2 and Jc in FeAs-based pnic-
tides, and many authors only consider two or three of
them [4, 5, 33, 23, 19, 16, 34]. Yildirim’s first-principles results
show that J1 ∼ J2 [5]. However, we prefer the opinion that
J1a, J1b and J2 originate from the AFM superexchange through
As atoms [35–37]. From the viewpoint of the structure of
FeAs layers, both J1a and J1b are mediated by two Fe–As–
Fe paths (figure 2(a)) and this should mean J1a �= J1b, but
J1a ∼ J1b due to the small structural change from tetragonal to
orthorhombic symmetry. J2 is mediated by only one Fe–As–
Fe path (figure 2(a)) and this should give 2J2 ∼ J1a. From the
viewpoint of classical favorable energy in forming stripe-like

3
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Figure 2. (a) Structure of the FeAs layer and scheme for the
exchange interactions mediated by Fe–As–Fe paths: Fe1–As1–Fe2
and Fe1–As2–Fe2 for J1a, Fe2–As2–Fe3 and Fe2–As3–Fe3 for J1b,
and Fe1–As2–Fe3 for J2. Different AFM configurations are shown:
(b) stripe-AFM along the a direction, (c) stripe-AFM along the b
direction, and (d) checkerboard AFM. Energies of the three AFM
configurations are given in (23).

AFM patterns along the a direction, as shown in figure 2(b)
(see figures 2(b)–(d) and (23)), we have,

E(b) = 4J1a S2 − 4J1b S2 − 8J2S2

E(c) = −4J1a S2 + 4J1b S2 − 8J2S2

E(d) = −4J1a S2 − 4J1b S2 + 8J2S2

E(b) < E(c) �⇒ J1a < J1b

E(b) < E(d) �⇒ 2J2 > J1a

. (23)

This should mean J1a < J1b and 2J2 > J1a, which in
fact are just the conditions that fulfil ρ2

1 − ρ2
2 � 0 to make

E(k) in (16) meaningful. As for Jc, it is a very weak long-
range AFM interaction whose origin is unclear except for the
superexchange. Therefore, in terms of p, q, r in (14), we
confine the coupling interactions as follows:

1 � p � 1 − δp

p/2 < q � p/2 + δq, 0 < r � δr

(24)

where δp, δq , and δr are the confine parameters for p, q , and
r , respectively, and they fulfil 0 < δp, δq, δr � 1. The lhs
of (24) represents the necessary conditions for forming striped
AFM ordering along the a direction, and the rhs the conditions
for limiting p, q and r within small regions.

From figure 3 we can see that TN increases as q and r
increase but decreases as p increases. It is easy to understand.
NNN spins and inter-layer NN spins all align antiparallel,
so bigger AFM coupling interactions will lower the system’s
energy, stabilize the AFM configuration and hence enhance
TN; in contrast, spins along the a direction align parallel but
have AFM interactions, therefore a bigger p will increase the
system’s energy, destabilize the AFM configuration and hence
decrease TN. Note that while q → p/2 or r → 0, TN → 0, that

 0.5  0.6  0.7  0.8  0.9 1  1.1
q

p=0.90
p=0.92
p=0.94
p=0.96
p=0.98

p=1.00

r=0.001

 
 0  0.05  0.1

r

p=0.98,  q=0.5

0

 0.1

 0.2

 0.3

 0.4

 0.5

T
N
 / 

[J
1b

S
(S

+
1)

]

T
N
 / 

[J
1b

S
(S

+
1)

]

0

 0.1

 0.2

 0.3

 0.4

Figure 3. The reduced AFM transition temperatures
(TN/[J1bS(S + 1)]) as functions of q for r = 0.001 and
p = 0.90, 0.92, . . . , 1.0 (from top to bottom). The inset shows an r
dependence of TN for p = 0.98 and q = 0.5.

 0.45  0.5  0.55  0.6
q

p=
0.

90

p=
0.

92

p=
0.

94

p=
0.

96

p=
0.

98

p=
1.

00

S=1,   r=0.001

q=p/2 case
0  0.02  0.04  0.06  0.08  0.1

r

S=1

p=0.98, q=0.50

p=0.98, q=0.49

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
<

S
z >

0

<
S

z >
0

0

 0.2

 0.4

 0.6

 0.8

Figure 4. The zero-temperature average spins 〈Ŝz〉0 as functions of q
for r = 0.001 and different p values: 0.90, 0.92, . . . , 1.0. The lower
limits of 〈Ŝz〉0 are shown by the dotted line. The inset shows
〈Ŝz〉0 ∼ r curves for (p, q) = (0.98, 0.50) (solid) and (0.98, 0.49)
(dotted), respectively.

is to say, both the existence of an AFM inter-layer interaction
Jc and the condition 2J2 > J1a are essential to form striped
AFM ordering. In fact, when r = 0 this system becomes
two-dimensional, and the result of TN = 0 in two-dimensions
is analogous to the Mermin–Wagner theorem for isotropic
interactions [38]. We also see that the critical condition p = 1
does not lead to TN → 0, which shows that J1a = J1b is not
a fatal factor to kill TN but only a critical value to separate the
two cases shown in figures 2(b) and (c).

The magnetic moment per Fe of LaFeAsO at low
temperature is reported experimentally as 0.36 μB [2] or
0.25 μB [3], both of which are very small compared to the
first-principles values 2.2–2.4 μB/Fe [39, 40]. Accordingly,
we choose S = 1 in our model (assuming the Landé g-factor
equals 2). Figure 4 shows the zero-temperature average spin
〈Ŝz〉0. Similar to TN, 〈Ŝz〉0 is also an increasing function

4
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q

r=0.0001
r=0.0004
r=0.0007
r=0.0010

0.48

0.52

0.56

(c)  J1b=60meV

q

r=0.0001
r=0.0004
r=0.0007
r=0.0010

0.50

0.52

0.54

0.56

0.58 (b)  J1b=50meV

q=p/2+δq (δq=0.05)

q

r=0.0001
r=0.0004
r=0.0007
r=0.0010

0.50

0.55

0.60

0.65

(a)  J1b=40meV

TN=138K, S=1

p
 0.95  0.96  0.97  0.98  0.99 1

Figure 5. The parameter regions (orange or gray) satisfying (24)
with TN = 138 K for (a) J1b = 40 meV, (b) J1b = 50 meV and
(c) J1b = 60 meV, where we use δp = 0.05, δq = 0.05 and
δr = 0.001. The star shows the value
(p, q, r) = (0.955,0.526, 0.0009) in (a), (0.98, 0.53, 0.0003) in (b),
or (0.99, 0.53, 0.0001) in (c).

Table 1. J min
1b for given δp, δq and δr .

δq δr δp J min
1b (meV)

0.01 0.0001 0.01 104.4
0.1 89.8

0.001 0.01 87.1
0.1 72.6

0.05 0.0001 0.01 50.9
0.1 44.6

0.001 0.01 43.6
0.1 37.2

of both q and r but a decreasing function of p. However,
〈Ŝz〉0 → 0 only when both r → 0 and q → p/2. When
only r → 0 or q → p/2 is met, 〈Ŝz〉0 approaches a minimum
but not zero, while at the same time TN → 0.

There are four J s in our model. What are their values?
Let us have a look at what they can be under the condition
TN = 138 K. Figure 5 shows the regions available for p,
q and r under conditions (24), with δp = 0.05, δq = 0.05
and δr = 0.001, in orange (gray) color for J1b = 40 meV,
50 meV, and 60 meV, respectively. The smaller J1b, the smaller
the parameter region available. Hence, for given δp, δq and
δr , there is a lower limit for J1b to fulfil a given TN. This
lower limit, written as J min

1b , is given in table 1, which shows
that the smaller each of δp, δq and δr is, the bigger J min

1b is.
However, although no upper limit for J1b is given, J1b cannot
be infinitely large. In fact, first-principles results show that
J1b ∼ 50 meV [4, 33].

0  20  40  60  80  100  120  140
T (K)

TN=138K

J1b=40meV

J1b=50meV

J1b=60meV

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

<
S

z >

Figure 6. The average spins 〈Ŝz〉 as functions of the temperature T
for J1b = 40, 50 and 60 meV. The corresponding (p, q, r)
parameters are (0.955, 0.526, 0.0009), (0.98, 0.53, 0.0003) and (0.99,
0.53, 0.0001), respectively.

Table 2. AFM and structure transition temperatures TN and TS of
LnFeAsO.

Ln La Ce Pr Nd Sm

TN (K) 138 140 127 141 140
TS (K) 156 155 153 — —
Reference [3] [8] [10] [11] [41]

Here we did not use the experimental data for the low-
temperature magnetic moment per Fe atom, which amounts
to 〈Ŝz〉0 = 0.13–0.18, to determine the J s, because it is too
small. If 〈Ŝz〉0 = 0.18 is met, we must have δr < 10−6, even
if q = p/2 is taken to minimize 〈Ŝz〉0 (see inset of figure 4).
Such a tiny r definitely cannot fall within the orange (gray) area
in figure 5 with a reasonable J1b to fulfil TN = 138 K. That is
to say, although the many-body AFM fluctuations substantially
reduce the low-temperature magnetic moment per Fe, they
cannot be in full charge of the very small low-temperature
magnetic moment which indeed is also ascribed to spin–orbit
and p–d hybridization etc [6].

We choose three sets of J s from the regions available
in figure 5 for estimation (the three stars): (p, q, r) =
(0.955, 0.526, 0.0009), (0.98, 0.53, 0.0003), and (0.99, 0.53,
0.0001), for J1b = 40 meV, 50 meV, and 60 meV, respectively.
In terms of J1b, J1a, J2 and Jc, we can refer to them as
J1b = 50 ± 10 meV, J1a = 49 ± 10 meV, J2 = 26 ± 5 meV,
and Jc = 0.020 ± 0.015 meV. The average spin 〈Ŝz〉 versus
temperature T curves with the three sets of parameters given
above are shown in figure 6.

We take LaFeAsO as an example here, however our
calculations are not restricted to LaFeAsO, because nearly
all LnFeAsO have similar or even the same transition
temperatures (see table 2). It seems that TN does not vary
much with different Ln. This is in contrast to AFe2As2,
whose TN varies with A: TN = 172.5 K [18] for A = Ca;
TN = 198 K [20], 205 K [42] or 220 K [43] for A = Sr and
TN = 140 K [22] or 135 K [44] for A = Ba. Although there are
some differences of structure between LnFeAsO and AFe2As2,
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we believe that our model works well for both of them, because
they both have layered structures with stripe-like AFM order
formed by Fe atoms. Indeed, this can also be extended to
Fe(SeTe) [45, 46], which has nearly the same properties and
can be superconducting under certain conditions.

4. Conclusion

In summary, we use a Green’s function method to study
the striped AFM order formed by Fe atoms in LnFeAsO
which is a representative of the parent compounds of recently
discovered Fe-based superconductors. We take LaFeAsO as
the example to analyze the AFM transition temperature TN

and zero-temperature average spin 〈Ŝz〉0, and show that both
TN and 〈Ŝz〉0 are increasing functions of J1b, J2 and Jc but
decreasing functions of J1a. By using TN = 138 K, we make
a reasonable estimation of the coupling interactions, J1b =
50 ± 10 meV, J1a = 49 ± 10 meV, J2 = 26 ± 5 meV, and
Jc = 0.020 ± 0.015 meV. The average spin 〈Ŝz〉 is determined
in the same way from zero temperature to TN, and TN is
expressed analytically. Our results also show that a non-zero
AFM inter-layer coupling Jc is essential for the existence of a
non-zero TN and that the AFM fluctuations substantially reduce
the low-temperature magnetic moment towards the small
experimental value. Although our results cannot determine the
relations between structure and AFM transitions, we believe
that the AFM transition is most likely caused by the structure
transition, because most of the experimental results show TN �
TS for FeAs-based pnictides. Our Green’s function approach to
the striped AFM properties can be used for other FeAs-based
parent compounds.

Acknowledgments

This work is supported by the Nature Science Foundation of
China (Grant Nos 10874232 and 10774180), by the Chinese
Academy of Sciences (Grant No. KJCX2.YW.W09-5), and by
the Chinese Department of Science and Technology (Grant
No. 2005CB623602).

References

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008
J. Am. Chem. Soc. 130 3296

[2] de la Cruz C et al 2008 Nature 453 899
[3] Klauss H H et al 2008 Phys. Rev. Lett. 101 077005
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